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Impact of extreme events in the Arctic

The occurrence and severity of extreme environmental events have increased in recent decades. Already, extreme weather and climate conditions are occurring with ever
greater frequency and magnitude. While remote, due to teleconnections across different Earth systems, the Polar regions and the changes that take place here have a
major impact on global weather and climate patterns. Studies suggest that it is now virtually certain that extreme events in the Polar regions will be more severe and
impactful than those previously observed, making it critically important that we recognize these extreme changes and understand the physical processes driving them. For
the Arctic, understanding the nature, dynamics and impacts of these extreme events requires an integrated approach. This is because the Arctic is, by nature,
an integrated and highly connected system; governed by complex interactions and teleconnections between land and sea ice, the ocean and atmosphere.

Extreme Arctic events have far-reaching influence on weather patterns and climate variability in other regions of the world. An improved understanding of the mechanism
driving these events can help improve weather and climate prediction models, leading to better forecasts and early warnings for extreme weather events globally. Extreme
events happen on different spatial and temporal scales and often across domains (e.g., land ice, sea ice, atmosphere, ocean). ARCTEX therefore adopts an integrated
methodological approach for resolving the critical "gap" zones between domain-specific EO datasets to gain further process-based insights into the nature and dynamics
of the Arctic climate interactions.

Bringing together the remote sensing communities of Exploiting and expanding on the current EO-data

land- and sea-ice portfolio

ARCTEX brings together the land ice and sea ice EO-communities to co- While time series have been created for a range of essential climate variables
develop datasets targeted at the complex interactions occurring in the Arctic, the temporal and spatial sampling of such climate data records is
during extreme events at the interfaces of these domains to better understand suboptimal for studying climate extremes occurring over short time scales and
their implications for the global climate dynamics. Within ARCTEX, we will the inter-connected impacts related to these. A typical temporal sampling of the
iIntegrate data, expertise, and methodologies from across these disciplines to climate data records is annual or in the best case, monthly. Hence, existing
produce much-needed data to support a comprehensive view of the complex datasets are not adequate for studying rapidly evolving extreme events taking
interactions occurring between land and sea ice and develop effective place in a matter of weeks or even days. To accurately document changes
strategies for addressing the grand challenges posed by climate change in associated with any extreme event and attribute cause and effect between
polar regions. different parameters, it is necessary to develop datasets to capture this shorter-

term variability and their covariances.

Science case study regions

To advance scientific understanding of extremes within the integrated Arctic Data examples and first results
System, we undertake three high-priority science case studies.
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